Methamphetamine use during pregnancy: A tale of 2 toxins!

Associate Professor Trecia Wouldes
Department of Psychological Medicine
Lifespan Development of Children Born to Mothers who use Drugs During Pregnancy

Prenatal Effects
- Teratogenic
 - Immediate
 - Transient
 - Ongoing
 - Latent

Postnatal Effects
- Caregiving Environment
 - Specific to Drug Using Lifestyle
 - General Risk Factors

Protective Factors
• Powerful stimulant drug
• Odourless crystalline substance
• Colour changes with ingredients
• Smoked, snorted, injected
• Manufactured in man-made labs
How big is the problem?

- Fastest growing drug problem worldwide (UNODC World Drug Report, 2010)
- Prevalence of use in population aged 16-64 highest in NZ with 2.2% of population having tried it compared to 1.1% in US (UNODC World Drug Report, 2010)
- Admissions for drug treatment for pregnant women in US highest for methamphetamine—increased from 8% in 1994 to 26.7% in 2006 (Terplan et al., 2006)
- Referrals to ADAPT team at Auckland Hospital increased from 10% in 2001 to 59% in 2003 (Wouldes et al., 2004)
- Still a big problem?
Infant Development, Environment And Lifestyle Study

Brown Center for the Study of Children at Risk

- Oklahoma
- California
- Iowa
- Hawaii
- Auckland

IDEAL
Inclusion/Exclusion Criteria

• Inclusion
 – 17 years or older
 – English speaking
 – Mother must self-report that she has used methamphetamine, any amphetamine including “speed” or “Ecstasy” or meconium assay confirms use
 – Comparison mothers had to self-report no use of meth and have confirmation with a meconium assay

• Exclusion
 – Mother has been institutionalized for retardation or emotional disorders; was overtly psychotic or had a documented history of psychosis
 – Mother living outside of the Auckland area or planned to move in next 12 months
Exclusion at Birth

- Mother and Newborn Child ineligible if...
 - Multiple births (twins)
 - Infant critically ill
 - Infant is born with a major life threatening congenital anomaly or documented chromosomal abnormality associated with mental or neurologic deficiency
Mothers and Babies who delivered at:
 Waitemata DHB
 Waitakere Hospital
 North Shore Hospital
 Auckland DHB
 National Women’s Health

Groups (Meth-exposed & comparison) matched for ethnicity, maternal education, infant birth weight
Developmental Follow-up

Birth, 1, 3, 9, 12, 24, 30, 36 months & 4.5, 5.5, 6.5 & 9 years?

- Social-emotional
- Cognitive
- Motor
- Growth/Health
- Behaviour
- Environment
Maternal and Environmental Data

- Maternal Lifestyle Interview
 - Neighborhood characteristics
 - Domestic Violence
 - Family Resources
- Medical Chart Review
- Beck Depression Interview (BDI)
- Brief Symptom Inventory (BSI)
- Substance Use Inventory (SUI)
- Substance Abuse Subtle Screening Inventory-3 (SASSI-3)
- Addiction Severity Index (ASI)
Self-Identified Ethnicity METH

US
- White: 40%
- Hispanic: 25%
- Hawaiian/Pacific Islands: 18%
- Asian: 10%
- Black: 5%
- American Indian: 2%

NZ
- Maori: 31%
- White: 57%
- Pacific Islands: 8%
- Asian: 4%
Comparison of Biological Mothers Background

<table>
<thead>
<tr>
<th>Maternal Characteristics</th>
<th>US METH N = 126</th>
<th>US COMP N = 193</th>
<th>NZ METH N = 93</th>
<th>NZ COMP N = 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>White/European</td>
<td>41%</td>
<td>40%</td>
<td>58%</td>
<td>47%</td>
</tr>
<tr>
<td>Maori</td>
<td>-</td>
<td>-</td>
<td>32%</td>
<td>36%</td>
</tr>
<tr>
<td>Hawaiian/Pacific Is</td>
<td>18%</td>
<td>17%</td>
<td>8%</td>
<td>13%</td>
</tr>
<tr>
<td>Asian</td>
<td>10%</td>
<td>14%</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Black</td>
<td>5%</td>
<td>14%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>American Indian</td>
<td>2%</td>
<td>2%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Education < high school</td>
<td>38%</td>
<td>38%</td>
<td>62%</td>
<td>50%</td>
</tr>
<tr>
<td>Mean Maternal Age</td>
<td>25.71</td>
<td>24.55</td>
<td>26.72</td>
<td>25.57</td>
</tr>
<tr>
<td>Low SES <5 Hollings.</td>
<td>29%*</td>
<td>12%</td>
<td>46%*</td>
<td>18%</td>
</tr>
<tr>
<td>Income <$20,000</td>
<td>60%*</td>
<td>40%</td>
<td>33%*</td>
<td>18%</td>
</tr>
<tr>
<td>No Partner</td>
<td>52%*</td>
<td>34%</td>
<td>52%*</td>
<td>27%</td>
</tr>
</tbody>
</table>
Percent of US and NZ Mothers who used Marijuana, Tobacco and Alcohol prenatally (Substance Use Inventory)

US Study
- Marijuana: 34% (MA Exposed), 4% (Comparison)
- Tobacco: 26% (MA Exposed), 13% (Comparison)
- Alcohol: 5% (MA Exposed)
- Ecstasy: 2% (MA Exposed)
- Methamphetamine: 97% (MA Exposed)

NZ Study
- Marijuana: 21% (MA Exposed), 62%* (Comparison)
- Tobacco: 51% (MA Exposed), 86%* (Comparison)
- Alcohol: 51% (MA Exposed), 63% (Comparison)
- Ecstasy: 19% (MA Exposed)
- Amphetamine: 15% (MA Exposed), 94% (Comparison)

*Significant difference
Birth Outcomes

• US Study found exposed infants were 3.5 times more likely to be born SGA—(Smith et al. 2006)
 – NZ babies bigger at birth than US babies (WHO)

• Neurobehaviour at Birth and 1 Month – exposed infants in both US and NZ
 – Under arousal, low tone, poorer quality of movement, increased stress
 – NZ only more asymmetric reflexes

LaGasse, Wouldes et al. (2011)
Not Living with Biological Mother

<table>
<thead>
<tr>
<th>% Not Living with Biological Mother</th>
<th>1 Month</th>
<th>12 Months</th>
<th>24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>US METH</td>
<td>33</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>NZ METH</td>
<td>3</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>US COMP</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>NZ COMP</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Positive Diagnosis Psychiatric Illness (BSI)

1 Month:
- US METH: 38%
- US COMP: 27%
- NZ METH: 42%
- NZ COMP: 22%

12 Month:
- US METH: 34%
- US COMP: 32%
- NZ METH: 43%
- NZ COMP: 26%
Maternal SUD and Mental Illness

• US and NZ Mothers who used METH 10 times more likely to meet criteria for a Substance Use Disorder (SUD)
 – US and NZ Mothers who used METH over 2.5 times more likely to meet criteria for a diagnosis of a Psychiatric Disorder (PD)
 – NZ only mothers were 5.5 times more likely to meet criteria for both SUD and PD

Wouldes, LaGasse et al. (2013)
Prenatal Care

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Number of Visits</td>
<td>11.4</td>
<td>14.4*</td>
<td>15.8**</td>
<td>17.0</td>
</tr>
<tr>
<td>GA first visits (weeks)</td>
<td>14.8</td>
<td>9.5*</td>
<td>15.9*</td>
<td>13.2</td>
</tr>
<tr>
<td>Inadequate Prenatal Care (%)</td>
<td>23</td>
<td>5*</td>
<td>8***</td>
<td>4</td>
</tr>
</tbody>
</table>

*Significant Difference between MA & Comparison Groups
**Significant Difference between US & NZ MA Groups

Wu, LaGasse, Wouldes et al. (2013)
Reasons for Child Protection Referral

40% Drugs Only
3% Other
57% Drugs + Social/Other

15% Drugs Only
3% Other
83% Drugs + Social Other

Wu, LaGasse, Wouldes et al. 2013
3 Months

Auditory evoked arousal during sleep

Galland, Mitchell, Thompson, Wouldes & NZ IDEAL Study Group 2012
Cognitive & Motor Development over first 3 years

• **US study found:**
 – No differences between MA and Comparison on cognitive outcomes over the first 3 years
 – Significant difference in one aspect of fine motor development “grasping” Smith et al.(2006)

• **NZ study found:**
 – No differences in cognitive outcomes in longitudinal analyses over first 3 years
 – Time trends for psychomotor development showed decreasing trends across the first three years.....
Predictors of delayed motor development

• Peabody Development Motor Scale
 – Gross Motor -- Prenatal MA exposure
 – Fine Motor – Male

• Bayley-II
 – Mental Development – Maori & Male
 – Psychomotor Development – Prenatal MA exposure & Birth weight

Woulde, LaGasse et al. (2014)
At preschool (age 4 ½)........

Are there still effects of prenatal exposure or is methamphetamine “toxic”?

What part does the child’s environment play in any observed development outcomes or is the environment “toxic”?

Characteristics of the Postnatal Environment

<table>
<thead>
<tr>
<th>Postnatal Measures</th>
<th>METH</th>
<th>NO METH</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Outcome Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caregiver Psychological Symptoms at 1,12,36 & 54 mths (Mean)</td>
<td>-0.59</td>
<td>-0.42</td>
<td>.004</td>
</tr>
<tr>
<td>Postnatal Drug Use (Mean heavy use)</td>
<td>6.89</td>
<td>4.25</td>
<td><.001</td>
</tr>
<tr>
<td>Maternal Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME (Mean at 30 mths)</td>
<td>33.70</td>
<td>35.28</td>
<td>.100</td>
</tr>
<tr>
<td>PPVT (Mean at 30 mths)</td>
<td>93.40</td>
<td>92.09</td>
<td>.430</td>
</tr>
<tr>
<td>% Parent Training (by age 54 mths)</td>
<td>54%</td>
<td>34%</td>
<td>.010</td>
</tr>
<tr>
<td>% Alcohol/Drug Tx (by age 54 mths)</td>
<td>49%</td>
<td>10%</td>
<td><.001</td>
</tr>
<tr>
<td>% Mental Health Tx (by age 54 mths)</td>
<td>58%</td>
<td>33%</td>
<td><.001</td>
</tr>
</tbody>
</table>
Early Analyses suggest...

1. Consistent with earlier research **boys** are lagging behind in cognitive and motor development.

2. Alcohol-exposure associated with more problem behaviours.

3. Maori children at preschool age lagging behind in cognitive and motor development and exhibiting more problem behaviours.
Executive Function

• Behaviours associated with inhibition, working memory and flexibility
• Poor executive function or dysfunction associated with problem behaviours (conduct disorder, poor learning outcomes)
Maternal Report of Everyday Executive Function or Executive Control

<table>
<thead>
<tr>
<th>Model</th>
<th>Inhibit</th>
<th>Emotional Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>P value</td>
</tr>
<tr>
<td>Model 1. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal Methamphetamine Exposure</td>
<td>.04</td>
<td>.560</td>
</tr>
<tr>
<td></td>
<td>.12</td>
<td>.100</td>
</tr>
<tr>
<td>Model 2. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal Postnatal Drug Use</td>
<td>.22</td>
<td>.028</td>
</tr>
<tr>
<td></td>
<td>.26</td>
<td>.002</td>
</tr>
<tr>
<td>Model 3. (Model 2 with mother’s psychological functioning)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td>.03</td>
<td>.71</td>
</tr>
<tr>
<td></td>
<td>.12</td>
<td>.16</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td>.49</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.37</td>
<td><.001</td>
</tr>
<tr>
<td>Model 4. (Model 3 with prenatal methamphetamine exposure & covariates: prenatal alcohol, tobacco, marijuana, child IQ, HOME, SES, maternal age and education)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td>-.02</td>
<td>.810</td>
</tr>
<tr>
<td></td>
<td>.08</td>
<td>.340</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td>.44</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.33</td>
<td><.001</td>
</tr>
</tbody>
</table>
Maternal Report of Behavioral Problems (SDQ)

<table>
<thead>
<tr>
<th>Model</th>
<th>Conduct Problems</th>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>P value</td>
</tr>
<tr>
<td>Model 1. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal Methamphetamine Exposure</td>
<td>.05</td>
<td>.498</td>
</tr>
<tr>
<td>Model 2. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal Postnatal Drug Use</td>
<td>.27</td>
<td>.002</td>
</tr>
<tr>
<td>Model 3. (Model 2 with mother’s psychological functioning)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td>.12</td>
<td>.180</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td>.39</td>
<td><.001</td>
</tr>
<tr>
<td>Model 4. (Model 3 with prenatal methamphetamine exposure & covariates: prenatal alcohol, tobacco, marijuana, child IQ, HOME, SES, maternal age and education)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td>.07</td>
<td>.380</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td>.37</td>
<td><.001</td>
</tr>
</tbody>
</table>
Observations of Inhibitory Behaviour – The Gift Wrap Delay

<table>
<thead>
<tr>
<th>Model</th>
<th>Gift Wrap Delay</th>
<th>(\beta)</th>
<th>(\text{P value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal Methamphetamine Exposure</td>
<td></td>
<td>.03</td>
<td>.720</td>
</tr>
<tr>
<td>Model 2. (Child Ethnicity & Gender)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal Postnatal Drug Use</td>
<td></td>
<td>.02</td>
<td>.890</td>
</tr>
<tr>
<td>Model 3. (Model 2 with mother’s psychological functioning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td></td>
<td>.12</td>
<td>.180</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td></td>
<td>.35</td>
<td><.001</td>
</tr>
<tr>
<td>Model 4. (Model 3 with prenatal methamphetamine exposure & covariates: prenatal alcohol, tobacco, marijuana, child IQ, HOME, SES, maternal age and education)</td>
<td></td>
<td>.15</td>
<td>.104</td>
</tr>
<tr>
<td>Postnatal Drug Use</td>
<td></td>
<td>.35</td>
<td><.001</td>
</tr>
<tr>
<td>Psychological Distress</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meth Labs Toxic Environments

http://pugetsoundblogs.com

What are the Implications?

- **Mother**
 Treatment – consider both addiction and mental illness

- **Child**
 Consequences of “toxic” environments where there may be:
 - Ongoing drug use
 - Mental Illness
 - Domestic Violence
 - Poverty
Adverse Child Events

ACE Study (Filetti et al. 1998)

- 17,000 adult members of U.S. Health Care Plan Questionnaire asking about ACE
 - Family characteristics
 - Sexual Abuse
 - Physical Abuse
 - Psychological Abuse

- Linear relationship between a number of adult health outcomes and ACE - 4 or more ACE compared to those with none
 - 2.2 times more likely to have Ischaemic heart disease
 - 1.9 times more likely to have any cancer
 - 2.4 times more likely to have had a stroke
 - 3.9 times more likely to have chronic bronchitis or emphysema
 - 1.6 times more likely to have diabetes
Development of Children Born to Mothers who use Drugs During Pregnancy

• Prenatal Effects

Teratogenic

Immediate

Transient

Latent

Ongoing

• Postnatal Effects

Caregiving Environment

Specific to Drug Using Lifestyle

General Risk Factors

Culture

Ethnicity

Legal System

Health Care System

Protective Factors
Prenatal Exposure to METH + **Maternal Psychopathology** + Ongoing drug use = Poor Executive Control
1. **Educate:**
 - Health care professionals
 - Women during antenatal care and/women of childbearing age

2. **Screen:**
 - Recognize common signs & symptoms of Mental Illness & Substance Abuse

3. **Treat:**
 - Treat the whole-family not the individual
 - Treat psychopathology and substance abuse together
 - Early Intervention for children - At risk for learning disabilities, ADHD, Behavioural Problems and Substance Abuse
THANKS TO OUR FUNDERS

- National Institute of Drug Abuse (NIH)
- Auckland Medical Research Foundation
- NZ Child Health Research Foundation
- Neurological Foundation